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Differential Equation Modeling

(Electrical — Mechanical - Fluid)
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Differential Equation Models

Continuous-time systems are often specified by an input/output
differential equation that can be generated by application of the
laws of physics.

What is meant by analogous systems?

An analogous electrical and mechanical system will have
differential equations of the same form.
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Differential Equation Models

B 22 MECHANICAL SYSTEMS

Mechanical systems are of two kinds:

1. Translational system which consists of mass, spring, dash-pot and lever arrangement.
2. Rotational system which consists of inertia, torsional spring, dash-pot and gear arrangement.

B 22.1 Mechanical Translational Systems

AD = Applied fnrce{inpu;:), (N).

- Mass, (Kg).

= Viscous friction coefficient of dash-pot, (N/m/sec)
= Spring stiffness constant, (N/m).

= W

= Displacement, (m).

= - o

= Linear velocity, (m/sec).

-

;- = Linear acceleration, (m/sec?).

SN NS
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Mechanical Transitional Systems

In mechanical translational system, mass is the element which stores kinetic energy, linear spring

stores potential energy and dash-pot dissipates energy and provides damping to the system.

Damper = Dashpot Spring

Gas flow
F _..F
through an orifice
— X

s

X is Moveme

Liguid forced F is Force

P x|
through gap i -
F

N
F I -
acceleration

N - Mass
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Mechanical Transitional Systems

1.Mass
d’x

When a force f{1) is applied to a mass M, it stores kinetic energy and develops an opposing force = M -
f

which acts in the direction opposite to the applied force as shown

. —x(1) iy
§— M — (1) ME‘— M0 The free budy-diagram for mass M

- e - 777ty
(a) (0)

According to Newton's law of motion, the sum of the applied forces is equal to the sum of the
reaction forces which act opposite to that of the applied forces.

.
d*x : d*x
acceleration = —

dr’ dt’

=M

Changed into Laplace form: F = Ms2 x
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Mechanical Transitional Systems

2. Spring

» A spring element is one that stores energy due to the elastic deformation
that results from the application of a force.

» Over its linear region, the spring satisfies Hook’s law that relates the force to
the displacement by the expression:

fit)= Kx(t) newton (N)

where K is the spring constant, with units newton/m.

The restoring force f(t) of a spring is proportional to the amount x(t) it stretched;

K =X f(t)
3—’UUWE‘~—-—+ f(t) HKH

Free-Body Diagram
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Mechanical Transitional Systems

3. Damper (D)

» The damping force f(t) due to viscous friction is proportional to velocity
» Viscous friction is often represented by a dashpot consisting of an oil-filled
cylinder and piston.

dx —x(1)
J(t) = BE 3—;} . (1)

Changed into Laplace form: F= B sx ;—le—um -
1] * o
B

Free-Body Diagram
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Damper and Spring not connected to a reference frame

B
a a
fi(t) e —.ﬂ 3 f(t) ros Er% (xy = x2)

(a) (b)
Fig. 2.3 Dash-pot not Connected to Reference Frame

2.
f(r)=BE(I. -x)

E] Eg ﬂ.-.
ot Ki{xy, — x3)

f(t
) x4 o f(t)

(a) (b)
Fig. 2.4 Spring not Connected to Reference Frame

M) =K (x, = x,)
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MASS AND SPRING SYSTEM

Applied Force

§I ::IE If‘ Mmi.emant x

Mass Datum Lewvel

I

Spring Inertia
Force Force

D'Alembert's Principle 1s that all the forces and moments on the body must add up to zero.

the applied force - spring force — inertia force = 0 (all being a function of time t).
F(t) - kx(t) - M d2x/dt2(t) = 0
F(t) = M d2x/ded(t) + kx (1)
Changing to a function of s we have  F(s) = Ms2 x + kx = x [MsZ + k]

F o FIM)

x{s]: =
Ms® + k s° + kM
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MASS AND SPRING SYSTEM

This may be shown as a transfer function.
G(s) = Ms) 1 /M

F(s) s° + k/M

The system block diagram is as shown.

Fit) x(s) LM x(t)

— G{S}zﬁs]_sl+lﬂ,{[ — -

This is a second order system as the highest power of x is 2,
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SPRING AND DAMPER

If we have a spring and dashpot in parallel as shown

Spring Force
_ a

Force balance as a function of time: F(t) = k x + kg dx/dt
Force
Force balance as a function of s : F(s)=kx+kgsx
Rearrange into a transfer function: 2 () = ¢ Ik
F k &k +1

Damping Force

The units of kg/k are seconds and this is the first order time constant for the system

X 1’k
This is the standard first order equation T =ka/k F {5) = Ts + 1
5

Spring k

Force™ N

o —T

Fit) k . Fit) _x(s) 1k x(t)
D i \ — ™ SO EG T T

x(t) Damping

Force <+
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MASS -SPRING - DAMPER SYSTEM

/

?" K p—>x _ F—>x
24— x <

ﬁ M "‘—."fﬂ} E.EI|£ -+ M P t—— fﬂ]
Y - dt

1t P

/ ML DO « s« (N o’

From the free ht:;dj,r diagra_m we easily obtain

the following equation of motion by equating the sum of the forces acting to the right to the sum of the
forces acting to the left.
d’x _dx
()=M—+B—+ Kx
/ dr’ dt

Taking Laplace transform on both sides of the above equation we get the following transfer function.
F(s)=Ms"X(s)+BsX(s)+KX(s) .

X(s) 1
or F(E)A(M3=+BS+K)
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MASS -SPRING - DAMPER SYSTEM

When the
Mass-Spring-Damper
are in Series as shown

d? K(xy = 0) «—

(b) (c)

Mechamcaf Sysfem with Dash-pot not Connected to Reference Frame

the t‘ul[nwmg dynamic EqUEIIGHE are written.

dl
()=M=2

B%(Il —I}+ H.I* =0 At point a2

E—(I-—-IIJ At point al
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MASS -SPRING - DAMPER SYSTEM

Takmg Laplace transform on both sides of the above equations,

the following transfer function model is obtained.
F(s)=(Ms* + Bs) X (s) - BsX, (s)

(Bs+ K)X,(s)= BsX(s)
Eliminating X (s), the following transfer function is obtained.

X{s)_ﬂ [Bs+K | )
F(s) s MBs® + MKs + BK |
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Thermal Systems

Consider a mass of M Kg at temperature ©,

The mass is submerged in a hot fluid with temperature 6,

The heat Q is transferred into the mass causing its temperature to rise.

A thermometer is used to monitor the change in the mass temperature with
time to see how long it takes for the mass to warm up to the same
temperature as the liquid

YV VYV

3] 1 Temperature Indicator
P AN
l Resistance *e
Thermometer —
N
0 > 97 5 T Lﬁlqmd
2 —~12

The laws of heat transfer tell us that the temperature rise 1s directly proportional to the heat added so:
dQ =Mc db; =Cdb
¢ 1s the specific heat capacity.
C = Mc 1s the thermal capacitance in Joules/Kelvin, 15



Thermal Systems

. , dQ do,
Divide both sides by dt and: i O = C -

The rate of heat transfer into the mass 1s @ = C df{/dt and the rate is governed by

» thermal resistance between the liquid and the mass.
» This obeys a law similar to ohm's law so that:

@ = (0> -01)/R R is the thermal resistance in Kelvin per Watt.

_ d91 FJ'I -0,
Equating for ® we have c— =1 =
dt R
ﬁ _ 0, - 9,
dt RC
do 0 0
Ly L =2 RC is a time constant T
dt RC C
@ % 5%
dt T T
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Thermal Systems

Changing from a function of time into a function of s we have

5{::']+E=B—2 0,(Ts+1)=0, i{:=,}r= l
T T i 0, (Ts+1)
. 1 81
—_— —
Ts+1

This is another example of standard first order equations
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Analogous Electric Circuit

An electric circuit that is analogous to a system from another discipline is
called an electric circuit analog.
The described mechanical systems can be represented by equivalent electric
circuits.
Analogs can be obtained by comparing the equations of motion of a
mechanical system, with either electrical mesh or nodal equations.
When compared with mesh equations, the resulting electrical circuit is
called a series analog.
When compared with nodal equations, the resulting electrical circuit is

called a parallel analog.
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Series Analogous

Equation of motion of the
above translational
mechanical system is;

(Ms® + fus + K)X(s) = F(s)

- (1)

e (1) R

L R

J ;j':l:;: \ .""'.I ""-. ,n'"-. ]
I\. '-\..ll '-\..ll I'q..ll "d'lll I'l-'I I'\"

=/ ] g
i(f)--—"

Kirchhoff’s mesh
equation for the above
simple series RLC
network is;

(Ls +R —I-L) I(s) = E(s)

» Comparing Egs. (2) & (3),
the sum of impedances & draw the
circuit shown in Figure (c).

» The conversions are summarized in

Figure (d).

M .
ETTITLA A A
I'k_.' r::_\.n' |l.1| l'.,lll l'lll'. ll'lll'l
w® T Al
A | T~ K
vir) "'-—(j

icl

For a direct analogy b/w Eq (1)
& (2), convert displacement to
velocity by divide and multiply
the left-hand side of Eq (1) by
s, yielding;

(.-1&-'5' +f + %) V(s) = F(s)

Cs
- (2) - (3)
mass = M — inductor = M henries
we recognize viscous damper = f, —= resistor = f, ohms
spring = K —= capacitor = !%famd'.-;

applied force = fif) —= voltage source = [{f)

velocity = w(f) —= mesh current = v(f)

(d)



Example for Converting a Mechanical System to a Series Analog

Example-5: Draw a series analog for the mechanical system.

.'l.'||i|"] Xol 1)
N fr; s
() J—— |
| SRR K4
LYY :
K 7 L A Iul lvl lj:;_\l_
S ||H||?q|| ) s
I || || || | | | | I || || I | | | | || I || ||
|||||||||||||||||||||||||||||||
|I II
A A

'l fl_

* The equations of motion in the Laplace transform domain are;

My + (f,, + fu)s + (K1 + K2)] X1(5) = (f,,s + K2) Xa(s) = F(s) —> (1)

—~(fros + K2)X1(5) + [Mas” + (hy + frs)s + (K2 + K3)| Xa(s) =0 ——> (2)

* Egs (1) & (2) are analogous t0 electrical mesh equations after conversion to velocity.

Thus,
(K1 + f{z]}

[Mm-+ Uh _|_thj 4+ 7 (] (f“ + K> )V ( ) = F(S] _—> (3)

- (th -+ %) 'r’fl ('i] + [:‘Wzﬁ' + UL_ —|—j‘h] —+ (K:‘—:A} V- ( ] 0 -S> (4)



Example-5: Continue.

s+ G o) + S i) = (4 RVt = ) ——> O
(A + 2 i)+ s+ () + Vs =0 —— ()

* Coefficients represent sums of electrical impedance.

 Mechanical impedances associated withM1 form the first mesh,

* whereas impedances between the two masses are common to the two loops.

* Impedances associated with M2 form the second mesh.

* The result is shown in Figure below, where v1(t) and v2(t) are the velocities of M1

and M2, respectively.
1 1

Jlwl| ﬁ’] J]‘;'I M? K 3
00— —AAN— ST
LJI | |‘J| |,l.' ',I...ll '-'-'l I"‘n'l._ U |U| IUI III\ l
N\ e \\ i
. /':l_ i ar.‘_':_:’ .;fl'_-,: -.II - J_,
ﬁ” l'“‘-_) .| < || “':-:: frz
i I I. .‘:_:
1'lH} - -’/ ”_“‘“E 'r_,ir;n -t —-"/ }
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Parallel Analogous

= X([)

fr
(@)

Equation of motion of the

above

translational

mechanical system is;

ell) vii)

(M:;-H;. F‘)VU F(s)

—> (1)

Comparing Egs. (1) & (2), we identify the
sum of admittances & draw the circuit

shown in Figure (c).

The conversions are
Figure 2.43(d).

| L3 Lo
in(h) €= R= L& i () M=< 1> 1 E%
— P 1 i é} KZE,
(b) ()
* Kirchhoff’s nodal equation
for the simple parallel RLC
network shown above is;
Cs+— : +— : E(s) = I(s)
§ 5) =1(s
R Ls
—(2)
mass =M —= capacitor = M farads
viscous damper = f, —= resistor = % ohms
’
spring = K — inductor = 1 henries

summarized

in

applied force = fi1)

velocity = (1)

—_—

_— -

(d)

current source = fif)

node voltage =wv(f)



Example for Converting a Mechanical System to a Parallel Analog

Example-6: Draw a parallel analog for the mechanical system.

Xo (1)

A e |
i e e B e R I &

e

I I I S 1 S S A A A
S N N N N N N Y N N N A NN N N N Y N I N N N Y N I

ﬁ.-,/ ﬁ;/

* Equations of motion after conversion to velocity are;

s+ G, 1) + v - (1, + B2 Va0 = ) — @)

Va(s) =0 —— (2)

(A + 22 Vi0)+ [Mas+ (7, £, + ]



Example-6: Continue.

K K-> K>
[.-'Wl.'i' + (fo, +110) + {1_:—‘]} Vi(s) — (}{H + _‘) Va(s) = F(s) (1)

5

Va(s) =0

- (f T F:) Vi(s) + [sw;s + (o fi) + (KTJ}

(2)

The Equation (1) and (2) are also analogous to electrical node equations.
Coefficients represent sums of electrical admittances.
Admittances associated with M1 form the elements connected to the first node,
whereas mechanical admittances b/w the two masses are common to the two nodes.
Mechanical admittances associated with M2 form the elements connected to the second
node.
The result is shown in the Figure below, where v1(t) and v2(t) are the velocities of M1
and M2, respectively. 1

I,

Vi) LA vaoll)

._ 1 1 i SN 1
N, — — ) — —
10 CD o f, K K My~ 7 K;
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} Parallel ‘

} Series ‘

Electrical Mechanical Mechanical
Q a;tit Analog I Analog I1
us
Y (Force-Current) (Force Voltage)
Voltage, e Velocity, v Force, f
Current, 1 Force, f Velocity, v
Resistance, R Lubricity, 1/B Friction, B
(Inverse friction)
damper const

Capacitance, C Mass, M Compliance, 1/K

(Inverse spring constant)

Inductance, L.

Compliance, 1/K
(Inverse spring constant)

Mass, M
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